0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 IDP
↳13 IDependencyGraphProof (⇔)
↳14 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load665(x1, x2, x3, x4) → Load665(x2, x3, x4)
Cond_Load665(x1, x2, x3, x4, x5) → Cond_Load665(x1, x3, x4, x5)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i109[0] →* i109[1])∧(i113[0] →* i113[1])∧(i44[0] →* i44[1])∧(i44[0] > 0 && i113[0] > 0 && i109[0] + 1 > 0 →* TRUE))
(1) -> (0), if ((i109[1] + 1 →* i109[0])∧(i44[1] →* i44[0])∧(i113[1] - 1 - i44[1] - 1 →* i113[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i109[0] →* i109[1])∧(i113[0] →* i113[1])∧(i44[0] →* i44[1])∧(i44[0] > 0 && i113[0] > 0 && i109[0] + 1 > 0 →* TRUE))
(1) -> (0), if ((i109[1] + 1 →* i109[0])∧(i44[1] →* i44[0])∧(i113[1] - 1 - i44[1] - 1 →* i113[0]))
(1) (i109[0]=i109[1]∧i113[0]=i113[1]∧i44[0]=i44[1]∧&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0))=TRUE ⇒ LOAD665(i113[0], i44[0], i109[0])≥NonInfC∧LOAD665(i113[0], i44[0], i109[0])≥COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])∧(UIncreasing(COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])), ≥))
(2) (>(+(i109[0], 1), 0)=TRUE∧>(i44[0], 0)=TRUE∧>(i113[0], 0)=TRUE ⇒ LOAD665(i113[0], i44[0], i109[0])≥NonInfC∧LOAD665(i113[0], i44[0], i109[0])≥COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])∧(UIncreasing(COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])), ≥))
(3) (i109[0] ≥ 0∧i44[0] + [-1] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i113[0] ≥ 0∧[(-1)bso_15] + i44[0] ≥ 0)
(4) (i109[0] ≥ 0∧i44[0] + [-1] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i113[0] ≥ 0∧[(-1)bso_15] + i44[0] ≥ 0)
(5) (i109[0] ≥ 0∧i44[0] + [-1] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i113[0] ≥ 0∧[(-1)bso_15] + i44[0] ≥ 0)
(6) (i109[0] ≥ 0∧i44[0] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i113[0] ≥ 0∧[1 + (-1)bso_15] + i44[0] ≥ 0)
(7) (i109[0] ≥ 0∧i44[0] ≥ 0∧i113[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i113[0] ≥ 0∧[1 + (-1)bso_15] + i44[0] ≥ 0)
(8) (i109[0]=i109[1]∧i113[0]=i113[1]∧i44[0]=i44[1]∧&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0))=TRUE∧+(i109[1], 1)=i109[0]1∧i44[1]=i44[0]1∧-(-(i113[1], 1), -(i44[1], 1))=i113[0]1 ⇒ COND_LOAD665(TRUE, i113[1], i44[1], i109[1])≥NonInfC∧COND_LOAD665(TRUE, i113[1], i44[1], i109[1])≥LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))∧(UIncreasing(LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))), ≥))
(9) (>(+(i109[0], 1), 0)=TRUE∧>(i44[0], 0)=TRUE∧>(i113[0], 0)=TRUE ⇒ COND_LOAD665(TRUE, i113[0], i44[0], i109[0])≥NonInfC∧COND_LOAD665(TRUE, i113[0], i44[0], i109[0])≥LOAD665(-(-(i113[0], 1), -(i44[0], 1)), i44[0], +(i109[0], 1))∧(UIncreasing(LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))), ≥))
(10) (i109[0] ≥ 0∧i44[0] + [-1] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i44[0] + [bni_16]i113[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (i109[0] ≥ 0∧i44[0] + [-1] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i44[0] + [bni_16]i113[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (i109[0] ≥ 0∧i44[0] + [-1] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i44[0] + [bni_16]i113[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (i109[0] ≥ 0∧i44[0] ≥ 0∧i113[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))), ≥)∧[(-1)Bound*bni_16 + (-1)bni_16] + [(-1)bni_16]i44[0] + [bni_16]i113[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(14) (i109[0] ≥ 0∧i44[0] ≥ 0∧i113[0] ≥ 0 ⇒ (UIncreasing(LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i44[0] + [bni_16]i113[0] ≥ 0∧[(-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(LOAD665(x1, x2, x3)) = x1
POL(COND_LOAD665(x1, x2, x3, x4)) = [-1]x3 + x2
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
LOAD665(i113[0], i44[0], i109[0]) → COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])
LOAD665(i113[0], i44[0], i109[0]) → COND_LOAD665(&&(&&(>(i44[0], 0), >(i113[0], 0)), >(+(i109[0], 1), 0)), i113[0], i44[0], i109[0])
COND_LOAD665(TRUE, i113[1], i44[1], i109[1]) → LOAD665(-(-(i113[1], 1), -(i44[1], 1)), i44[1], +(i109[1], 1))
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 → FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 → FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer